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Abstract 
Adaptive evolution can be described by an uphill walk in a fitness landscape. However, climbing the global peak in a multipeak landscape is 
improbable because of the high chance of being trapped at a local peak. Nonetheless, over three-quarters of simulated adaptive walks in the 
fitness landscape of the Escherichia coli dihydrofolate reductase (DHFR) gene were reported to end at the highest 14% of peaks, suggesting 
that biological systems may be substantially more evolvable than commonly thought. To investigate the cause and generality of this 
observation, we estimate in empirical and theoretical fitness landscapes the probability of reaching high peaks by adaptive walks (PHP), where 
high peaks refer to the highest 1, 5, 14, or 25% of all peaks. We find that (i) PHP varies substantially among landscapes, (ii) PHP in empirical 
landscapes is generally comparable to or smaller than that in same-size Rough Mount Fuji landscapes of similar ruggedness, and (iii) lowering 
landscape ruggedness boosts PHP. As observed in DHFR, we find in every examined landscape a positive correlation between the fitness of a 
peak and its basin size, which is the number of genotypes that can reach the peak through adaptive walks. Yet, this correlation does not 
guarantee a large PHP because of the influences of other factors. We conclude that evolvability depends on the specific fitness landscape and 
that the large PHP in the DHFR landscape is not a general property of empirical or theoretical fitness landscapes.
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Introduction
Evolution is often described as a walk of a population in a fit-
ness landscape depicting the relationship between genotypes 
and their fitness (Wright 1932; McCandlish 2011; De Visser 
and Krug 2014). As in geographic landscapes, fitness land-
scapes contain (fitness) peaks where any single-nucleotide 
change in the genotype results in a fitness reduction. Past em-
pirical studies revealed that fitness landscapes typically con-
tain multiple peaks (i.e. rugged) (Weinreich et al. 2005; De 
Visser and Krug 2014; Nahum et al. 2015; Lyons et al. 
2020; Bank 2022); the highest peak is known as the global 
peak, while all other peaks are referred to as local peaks. 
Unless the population of concern is small, evolution is gener-
ally an uphill walk in the fitness landscape, with every step as-
sociated with a fitness gain or at least not a fitness drop. Much 
has been learned through theoretical analyses of adaptation in 
fitness landscapes (Franke et al. 2011; Franke and Krug 2012; 
Manhart and Morozov 2014; Neidhart et al. 2014; Ferretti 
et al. 2018; Krug and Oros 2024). It is clear that, in a fitness 
landscape with many peaks, the probability of arriving at 
the global peak through an adaptive walk starting from a ran-
dom genotype is slim, because the population is easily trapped 
in one of the local peaks (Orr 2005, 2009). In other words, the 
evolvability of biological systems may be severely limited due 
to the ruggedness of fitness landscapes.

Recently, Papkou et al. (2023) measured the fitness land-
scape of a nine-nucleotide segment of the Escherichia coli 
gene folA, corresponding to three amino acids of its encoded 

dihydrofolate reductase (DHFR). The mapped landscape in-
cludes the fitness estimates of 99.7% of all possible genotypes 
of the nine-nucleotide segment. In a sublandscape consisting of 
135,178 genotypes (see below), 514 fitness peaks were identi-
fied. Based on the fitness distribution of these peaks, Papkou 
et al. classified the 74 highest peaks—all having amino acid 
Glu or Asp at position 27—as high peaks. They reported that 
an adaptive walk starting from a randomly picked genotype 
in the sublandscape has a probability (PHP) of 76.5% to arrive 
at one of the high peaks, despite that the high peaks constitute 
only 74/514 ≈ 14% of all peaks. This unexpected observation 
suggests that, notwithstanding the difficulty in reaching the glo-
bal peak by an adaptive walk in a rugged landscape, reaching a 
high peak is highly probable. Papkou et al. explained the unex-
pectedly large PHP by a positive correlation between the fitness 
of a peak and its basin size, which is the number of genotypes 
that can reach the peak by adaptive walks; that is, higher peaks 
are more accessible than lower peaks.

Papkou et al.’s finding implies that the evolvability of bio-
logical systems may be substantially higher than currently 
thought, provided that evolvability includes reaching any of 
the high peaks. However, because Papkou et al. studied only 
one gene segment, it is unclear whether their finding extends 
to other fitness landscapes and whether the explanation of-
fered for the large PHP is general. In the present work, we ad-
dress these questions by investigating multiple empirical and 
theoretical fitness landscapes. We show that PHP varies greatly 
among empirical and theoretical fitness landscapes and that 
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the large PHP of the DHFR sublandscape is not general. We 
further show that while the positive correlation between 
peak fitness and basin size appears universal, this correlation 
does not guarantee a large PHP because of the influences of 
other factors.

Results
Variation in the Probability of Reaching High Peaks 
Among Empirical Landscapes
We started by replicating the published estimation of the prob-
ability of reaching various peaks in the fitness landscape of 
DHFR (Papkou et al. 2023). Of the 261,382 genotypes with 
fitness estimates (Table 1), Papkou et al. considered 18,029 
genotypes to be functional and the rest to be nonfunctional 
due to their low fitness. They then removed nonfunctional gen-
otypes with no functional neighbors, where a neighbor refers 
to a genotype that differs from the focal genotype by one nu-
cleotide change. Of the remaining genotypes, they identified a 
giant component (i.e. the largest connected subgraph) of 
135,178 genotypes consisting of 18,019 functional genotypes 
and 117,159 nonfunctional genotypes (Table 1). They then 
treated this giant component as the DHFR landscape in subse-
quent analysis. To avoid confusion, we will refer to this giant 
component as the DHFR sublandscape; the landscape consist-
ing of all 261,382 genotypes with estimated fitness will be re-
ferred to as the DHFR landscape. We first followed Papkou 
et al. to simulate adaptive walks in the DHFR sublandscape. 
Specifically, starting from a randomly picked genotype in the 
sublandscape, we simulated an adaptive walk (see Materials 
and Methods) till the population reached a fitness peak. 
Such an adaptive walk was repeated for 106 randomly picked 
starting genotypes. We then drew the cumulative probability 
distribution of reaching peaks of various fitness (Fig. 1a), 
which corresponds to Fig. 3E in Papkou et al. (2023). We 
found that the probability of reaching the highest 14% of all 
peaks is P14% = 76.4%, virtually identical to the reported val-
ue (76.5%). We then conducted the same analysis in the 
DHFR landscape and considered the highest 14% of all 
4,055 peaks in the DHFR landscape as high peaks, which 
yielded P14% = 69.1% (Fig. 1a). Note that if 14% of the total 
number of peaks is not an integer, we considered the largest 
integer smaller than 14% of the total number of peaks to be 
the number of high peaks.

To investigate the generality of the above finding, we col-
lected from the literature five representative empirical fitness 
landscapes (Table 1): (i) an E. coli Shine–Dalgarno sequence 
translational activity landscape of nine variable nucleotide 
sites each with four states (Kuo et al. 2020); (ii) a yeast 
tRNA fitness landscape of 10 variable nucleotide sites includ-
ing six two-state sites and four three-state sites (Domingo et al. 
2018); (iii) an ACE2 affinity landscape of SARS-CoV-2 
Omicron BA.1 spike receptor-binding domain (RBD), with 
15 variable nucleotide sites each with two states (Moulana 
et al. 2022); (iv) a sea anemone (Entacmaea quadricolor) 
fluorescent protein fluorescence intensity landscape of 13 vari-
able amino acid sites each with two states (Poelwijk et al. 
2019); and (v) a Streptococcal protein G domain B1 (GB1) 
immunoglobulin-binding affinity landscape of four variable 
amino acid sites each with 20 states (Wu et al. 2016). For 
simplicity, we refer to them as fitness landscapes with the 
understanding that fitness is approximated by different pheno-
typic values in these landscapes and the assumption that T
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higher phenotypic values are selectively favored. We analyzed 
these five landscapes and drew the cumulative probability dis-
tribution of reaching peaks of various fitness as in the analysis 
of the DHFR landscape.

While the cumulative probability distributions of all six 
landscapes are more or less S-shaped, the specifics of the distri-
butions differ greatly (Fig. 1). We find that although P14% ex-
ceeds 14% in every landscape examined, its variation among 
the six landscapes is substantial—from 32.4% to 96.9%. 
Because it was somewhat arbitrary to classify the highest 
14% of all peaks as high peaks in DHFR, we respectively 
treated the global peak or highest 1%, 5%, or 25% of peaks 
as high peaks in additional analyses. The results 
(supplementary fig. S1, Supplementary Material online) are 
qualitatively similar to those of P14% (Fig. 1).

Variation in the Probability of Reaching High Peaks 
Among Theoretical Fitness Landscapes
Because the above six empirical landscapes vary in many as-
pects (species, gene, number of variable sites, number of states 
per site, fitness measure, etc.), it is not easy to find why PHP 

varies among them. We thus resorted to theoretical fitness 
landscapes, where we could study how PHP changes with 
key landscape parameters.

We first generated a series of Rough Mount Fuji (RMF) land-
scapes (Aita et al. 2000; Aita and Husimi 2000; Neidhart et al. 
2014) of nine variable sites each with four states, because two of 
the empirical landscapes (DHFR and Shine–Dalgarno) have 

nine variable sites with four states per site. The ruggedness of 
an RMF landscape can be adjusted by the parameter σ ≥ 0, 
which describes the extent to which the fitness effects of genetic 
changes are nonadditive (see Materials and Methods). An RMF 
landscape with σ = 0 is smooth and contains only one peak. The 
larger the σ, the higher the nonadditivity and ruggedness of the 
RMF landscape. The cumulative probability distributions of 
reaching peaks of various fitness show that as σ increases 
from 0.5 to 10, P14% reduces from 96.3% to 26.4% (Fig. 2
and supplementary fig. S2, Supplementary Material online). 
Similarly, P1 (probability of reaching the global peak), P1%, 
P5%, P14%, and P25% decline as σ rises (supplementary fig. S3, 
Supplementary Material online). Hence, for the series of RMF 
landscapes examined, landscape ruggedness is an important de-
terminant of PHP.

We next investigated a series of NK landscapes (Kauffman 
and Weinberger 1989) of nine sites each with four states. 
We varied K from 0 to 8 to increase the landscape ruggedness 
from zero to maximum. In general, P14% declines from 100% 
to 24.8% as K increases from 0 to 8 (supplementary fig. S4, 
Supplementary Material online). Note, however, that P14% 

cannot be fairly compared when K = 0 (only 1 peak) or 1 
(27 peaks) due to the small number of peaks. Similar results 
were seen for P1, P1%, P5%, and P25% (supplementary fig. 
S5, Supplementary Material online).

We also simulated a series of fitness landscapes of 5 to 10 
variable sites each with four states under the House of Cards 
(HoC) model (Kingman 1978), in which the fitness of a 
genotype is a random variable between 0 and 1. These 

(a) (b) (c)

(d) (e) (f)

Fig. 1. Cumulative probabilities of reaching peaks of various fitness values by adaptive walks in six empirical fitness landscapes: E. coli DHFR fitness 
landscape/sublandscape (a), E. coli Shine–Dalgarno sequence translational activity landscape (b), yeast tRNA fitness landscape (c), landscape of SARS- 
CoV-2 Omicron BA.1 spike RBD affinity for ACE2 (d), E. quadricolor fluorescent protein fluorescence intensity landscape (e), and Streptococcal GB1 
immunoglobulin-binding affinity landscape (f). In each panel, peaks are ordered from low to high fitness on the x axis, and the y axis shows the probability 
of reaching peaks with fitness no greater than a given value on the x axis. The black dashed line separates the highest 14% of peaks (to the right of the line) 
and the rest of the peaks. The probability of reaching the highest 14% of peaks (P14%) and the number of peaks (Npeaks) in each landscape are indicated. In 
a), the gray and black curves show the results in the DHFR landscape and sublandscape, respectively, and the left (gray) and right (black) dashed lines are 
for the DHFR landscape and sublandscape, respectively.
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landscapes are all maximally rugged because the fitness differ-
ence between two genotypes is independent of the extent of 
their genotypic difference. We found that varying the number 
of variable sites has minimal impacts on P14%, which is always 
around 25% (supplementary fig. S6, Supplementary Material
online). Varying the number of variable sites also has minimal 
impacts on P1, P1%, P5%, and P25% (supplementary fig. S7, 
Supplementary Material online).

Comparing PHP Between Empirical and RMF 
Landscapes
The analysis of theoretical landscapes revealed an important 
determinant of PHP—landscape ruggedness. To assess whether 
the PHP of an empirical landscape reflects the expected PHP 

given its landscape ruggedness, we compared PHP between 
an empirical landscape and a RMF landscape of the same 
size (i.e. same number of variable sites and number of states 
per site) and similar ruggedness quantified by the fraction of 
genotypes that are peaks (see Materials and Methods), be-
cause the RMF model was previously shown to reproduce 
key features of various empirical landscapes (Aita et al. 
2000; Szendro et al. 2013; Neidhart et al. 2014). For instance, 
in an analysis of 10 empirical landscapes, Szendro et al. (2013)
used the RMF model to interpolate the behavior of various 
ruggedness measures between the limits of a HoC model and 
an additive landscape and found good agreement with the 
trends in the empirical data.

We first created a series of RMF landscapes of nine four- 
state sites with different σ. By varying the cutoff that distin-
guished “functional” from “nonfunctional” genotypes, we 
followed Papkou et al. (2023) to identify the giant component 
in each of these RMF landscapes with ∼135,178 genotypes 
(see Materials and Methods). These giant components, re-
ferred to as RMF sublandscapes, were then compared with 
the DHFR sublandscape in terms of PHP. We found that the 
DHFR sublandscape is only minimally rugged, corresponding 
to a same-size RMF sublandscape with σ = 0.50 (Table 1). 
Interestingly, PHP is generally smaller in the DHFR subland-
scape than in the corresponding RMF sublandscape (see 
P5%, P14%, and P25% in Fig. 3a and P1 and P1% in 
supplementary fig. S8a, Supplementary Material online). 

Another measure of the ruggedness of the DHFR subland-
scape is its number of peaks as a fraction of the number of 
peaks in the corresponding HoC landscape, which can be gen-
erated by randomly shuffling the fitness of all genotypes in the 
DHFR sublandscape. This ruggedness measure is 8.7% based 
on 30 rounds of shuffling (Table 1), meaning that the number 
of peaks in the DHFR sublandscape is 8.7% of that in the cor-
responding maximally rugged landscape. Because the DHFR 
sublandscape was constructed with functional genotypes and 
their nonfunctional neighbors, it may be more appropriately 
compared with HoC landscapes created by shuffling the fitness 
of only functional genotypes. Based on this shuffling method, 
the number of peaks in the DHFR sublandscape is 34.6% of 
that in the corresponding maximally rugged landscape 
(Table 1).

We similarly compared RMF landscapes of nine four-state 
sites with the DHFR landscape. The DHFR landscape corre-
sponds to a same-size RMF landscape with σ = 0.91 in terms 
of the fraction of genotypes that are peaks (Table 1). PHP is 
similar between the DHFR landscape and the corresponding 
RMF landscape (see P5%, P14%, and P25% in Fig. 3b and P1 

and P1% in supplementary fig. S8b, Supplementary Material
online).

The Shine–Dalgarno sequence translational activity land-
scape corresponds to a same-size RMF landscape with σ = 
0.83 in terms of the fraction of genotypes that are peaks 
(Table 1), and its PHP is similar to that in the corresponding 
RMF landscape (Fig. 3b and supplementary fig. S8b, 
Supplementary Material online).

PHP is relatively small for the yeast tRNA fitness landscape 
(Fig. 1c). We found that this landscape corresponds to a same- 
size RMF of σ = 0.71 (Table 1). PHP of the corresponding RMF 
landscape is also relatively small, although larger than that of 
the tRNA fitness landscape (Fig. 3c and supplementary fig. 
S8c, Supplementary Material online).

PHP is relatively large for the SARS-CoV-2 spike RBD affin-
ity landscape (Fig. 1d). We found that this landscape corre-
sponds to a same-size RMF of σ = 0.38 (Table 1) and that 
PHP of the corresponding RMF landscape is also relatively 
large (Fig. 3d and supplementary fig. S8d, Supplementary 
Material online).

(a) (b)

Fig. 2. Negative correlation between the parameter σ and the probability of reaching high peaks by adaptive walks in RMF landscapes. a) Cumulative 
probability of reaching peaks of varying fitness in a RMF landscape with σ = 0.5. The dashed line separates the highest 14% of peaks (to the right of the 
line) and the rest of the peaks. The probability of reaching the highest 14% of peaks (P14%) and the number of peaks (Npeaks) in the landscape are indicated. 
b) P14% declines with σ in RMF landscapes. Pearson’s correlation (R) between P14% and σ is indicated (P < 4.9 × 10−4).
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For the fluorescent protein landscape, the corresponding 
same-size RMF landscape has a σ of 0.62 (Table 1). The ob-
served PHP is generally below the expected value from the cor-
responding RMF landscape (Fig. 3e and supplementary fig. 
S8e, Supplementary Material online).

The GB1 immunoglobulin affinity landscape corresponds to 
a same-size RMF landscape of σ = 0.32 (Table 1). Hence, its 
large PHP (Fig. 1f) is expected; in fact, its PHP is below the ex-
pectation from the corresponding RMF landscape (Fig. 3f and 
supplementary fig. S8f, Supplementary Material online).

Empirical landscapes are usually incomplete, meaning that 
the fitness information is lacking for some genotypes. The pres-
ence of up to 24.5% of missing data in some of the empirical 
landscapes studied (Table 1) raises the question of whether 
our comparison between an empirical landscape and a same- 
size complete RMF landscape is appropriate. To address this 
question, we generated incomplete RMF landscapes by remov-
ing a fraction of genotypes in two different ways. In the first 
way, we removed 1%, 10%, or 25% of genotypes randomly. 
In the second way, we removed 1%, 10%, or 25% of the least 
fit genotypes, because fitness quantification tends to be difficult 

or inaccurate for low-fitness genotypes, especially in high- 
throughput experiments (Li et al. 2016). We found that PHP 

is hardly affected by the above fractions of missing data except 
when 25% of randomly chosen genotypes are removed; even 
then, PHP is usually reduced only slightly (supplementary fig. 
S9, Supplementary Material online). For the DHFR subland-
scape, we already compared it with RMF sublandscapes of 
similar numbers of genotypes (Fig. 3a). Taken together, the 
comparisons in Fig. 3 and supplementary fig. S8, 
Supplementary Material online are expected to be reliable.

A Positive Correlation Between Peak Height and 
Basin Size is General but Does Not Guarantee a 
Large PHP

Papkou et al. discovered in their analysis of the DHFR sub-
landscape that the fitness of a peak positively correlates with 
its basin size, which is the number of genotypes that can reach 
the peak through adaptive walks. They suggested that this 
positive correlation may explain their observed large PHP. 
The positive correlation between peak height and basin size 

(a) (b)

(e)(d) (f)

(c)

Fig. 3. Probability of reaching high peaks in an empirical landscape and that in its corresponding same-size RMF landscape of comparable ruggedness. 
High peaks refer to the highest 5%, 14%, or 25% of all peaks. In each panel, a series of RMF landscapes of different σ are simulated. For a given color, 
each open circle represents an RMF landscape, of which the fraction of genotypes that are peaks is indicated on the x axis and the probability of reaching 
high peaks is indicated on the y axis. Similarly, for a given color, a solid dot represents an empirical landscape of which the fraction of genotypes that are 
peaks is indicated on the x axis and the probability of reaching high peaks is indicated on the y axis. Comparisons for the DHFR sublandscape (a), DHFR 
landscape (b), Shine–Dalgarno landscape (b), tRNA landscape (c), spike RBD landscape (d), fluorescent protein landscape (e), and GB1 landscape (f).
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(Rph-bs) makes intuitive sense, because everything else being 
equal, a fitter genotype should on average be more likely 
than a less fit genotype to be the end point of an adaptive 
walk owing to the simple fact that natural selection pushes a 
population to higher fitness. We thus examined whether a 
positive Rph-bs exists in the empirical landscapes studied 
here. Because Papkou et al. already examined the DHFR sub-
landscape, we here analyzed the DHFR landscape instead. 
Indeed, Rph-bs ranges from 0.69 to 0.97 in the six empirical 
landscapes. Interestingly, the fluorescent protein landscape 
has the largest Rph-bs (Fig. 4) but smallest P14% (Fig. 1) among 
the six landscapes, although Rph-bs and P14% are not signifi-
cantly correlated (R = −0.75, P = 0.086).

To investigate the relationships among landscape ruggedness, 
Rph-bs, and PHP, we examined a series of RMF landscapes of nine 
sites each with four states. We found that as σ and ruggedness 
rise, Rph-bs (Fig. 5 and supplementary fig. S10, Supplementary 
Material online) and PHP (supplementary figs. S2 and S3, 
Supplementary Material online) decrease. That Rph-bs tends to 
decrease with landscape ruggedness is generally true for NK 
landscapes of nine sites each with four states (supplementary 
fig. S11, Supplementary Material online). The HoC landscapes 
examined have different numbers of variable sites but similar 
ruggedness and PHP (supplementary fig. S7, Supplementary 
Material online), and their Rph-bs values are similar too 
(supplementary fig. S12, Supplementary Material online).

In all empirical and theoretical landscapes examined except 
for a smooth NK landscape, Rph-bs is significantly positive and 
is at least moderate in size. Yet, P14% varies substantially among 
these landscapes. Therefore, although a positive Rph-bs may 

explain why the probability of reaching high peaks exceeds 
the fraction of peaks considered high, it does not guarantee a 
P14% that is much higher than 14% as in the DHFR subland-
scape. Using the simulated RMF landscapes (Fig. 5 and 
supplementary fig. S2, Supplementary Material online), we per-
formed a multiple linear regression in which P14% is the depend-
ent variable and landscape ruggedness (measured by the fraction 
of genotypes that are peaks) and Rph-bs are two independent var-
iables. In the regression, the coefficient for ruggedness is ∼63 
times the coefficient for Rph-bs, suggesting that ruggedness plays 
a much greater role than Rph-bs in determining P14%. Note that 
in the above regression, we normalized ruggedness and Rph-bs so 
that they both have a mean of 0 and a SD of 1 to allow a fair com-
parison. Qualitatively similar results were obtained when the 
dependent variable was P1, P1%, P5%, or P25%.

Discussion
Our investigation of empirical and theoretical fitness land-
scapes revealed that the probability of reaching high peaks 
(PHP) by an adaptive walk is generally greater than the propor-
tion of the highest peaks that are considered high peaks. 
Nonetheless, PHP varies substantially among empirical as 
well as theoretical landscapes, and landscape ruggedness is a 
major determinant of PHP, with higher ruggedness generally 
corresponding to smaller PHP.

As mentioned, the proportion of the highest peaks considered 
to be high peaks by Papkou et al. (2023) was somewhat arbitrary. 
That is why we considered multiple proportions (top 1, top 1%, 
5%, 14%, and 25%) in our analysis; the results obtained, 

Fig. 4. Correlation between peak fitness and basin size in empirical landscapes. Each dot is a peak, with the x axis showing its fitness and y axis showing 
its basin size measured by the fraction of genotypes in the landscape that can reach the peak by an adaptive walk. Pearson’s correlation coefficient (R) is 
indicated. R is significantly different from 0 in all panels (P < 2.2 × 10−16 in all panels). Note that the result for the DHFR landscape instead of the DHFR 
sublandscape is presented.
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however, were qualitatively similar. One may argue that the pro-
portion of the highest peaks considered high peaks should be 
landscape-specific, depending on the fitness distribution of all 
peaks in the landscape. We do not disagree. However, such defi-
nitions of high peaks would make it difficult to compare among 
empirical landscapes as well as between empirical and theoretical 
landscapes. We thus leave the investigation of a more realistic def-
inition of high peaks and its impact on PHP to future research.

In our study, the theoretical fitness landscapes were simulated 
without error, but the fitness values in the empirical landscapes 
were experimentally measured so must contain error. A previous 
systematic analysis found that random fitness estimation errors 
cause an overestimation of landscape ruggedness (Song and 
Zhang 2021), which is predicted to cause an underestimation 
of PHP. In other words, the true PHP may be larger than estimated 
here and in Papkou et al. (2023). Indeed, Papkou et al. (2023)
commented that their finding of a large PHP is qualitatively un-
changed when measurement error is considered. However, 
most of the empirical landscapes analyzed here do not contain 
measurement error information, so the impact cannot be directly 
assessed using standard methods (Franke et al. 2011). This said, 
we note that our key finding through comparing PHP between an 
estimated empirical landscape and its corresponding same-size 
RMF landscape of similar ruggedness is most likely unaffected, 
provided that the relationship between landscape ruggedness 
and PHP is not drastically different between the empirical and 
RMF landscapes near the ruggedness of the empirical landscape.

We compared empirical landscapes with corresponding 
same-size RMF landscapes of similar ruggedness because the 
RMF model was shown to reproduce key features of various em-
pirical landscapes (Aita et al. 2000; Szendro et al. 2013; 
Neidhart et al. 2014). There is no doubt that the RMF model 
is simple and cannot reproduce all aspects of empirical land-
scapes. However, without evidence of the superiority of other 
theoretical landscapes over the RMF model, our comparison be-
tween empirical and RMF landscapes seems appropriate. This 
comparison demonstrated that PHP of an empirical landscape 
is generally similar to or smaller than that of its corresponding 
RMF landscape, providing no evidence for higher-than- 
expected evolvability in empirical landscapes. This means that 
the observation of a large P14% in the DHFR sublandscape 
(Papkou et al. 2023) is not unexpected given the sublandscape’s 

size and ruggedness. The initial surprise at the large P14% of 
DHFR was likely due to our ignorance on its expected value.

In both empirical and theoretical landscapes, we found land-
scape ruggedness to be a major determinant of the probability of 
reaching high peaks, consistent with prior theoretical results, 
which showed that landscape ruggedness plays a critical role 
in shaping evolutionary dynamics and that increased landscape 
ruggedness constrains evolvability (Franke et al. 2011; Franke 
and Krug 2012; Manhart and Morozov 2014; Neidhart et al. 
2014; Ferretti et al. 2018; Krug and Oros 2024).

In every empirical or theoretical landscape examined, we ob-
served a positive correlation between the fitness of a peak and its 
basin size that was initially reported in DHFR by Papkou et al. 
(2023). While this positive correlation may explain why PHP ex-
ceeds the fraction of the highest peaks considered high peaks, it 
does not guarantee a large PHP due to the influences of other fac-
tors. Specifically, in the analysis of RMF landscapes, we found 
that PHP is influenced substantially more by landscape rugged-
ness than by the above correlation, underscoring the primary 
impact of landscape ruggedness on PHP.

We focused on low-dimension fitness landscapes (i.e. with 
relatively few variable sites) because all high-dimension, empiric-
al fitness landscapes contain a substantial fraction of missing 
data. However, real-world fitness landscapes have orders of mag-
nitude more variable sites than those considered here and the ap-
plicability of our findings to real-world fitness landscapes is 
unclear. For instance, fitness peaks inaccessible in low-dimension 
landscapes often become accessible in landscapes of extremely 
high dimensions (Greenbury et al. 2022), and crossing fitness val-
leys becomes less of a problem than finding a fitter genotype in 
the sea of many equally fit genotypes (Van Nimwegen and 
Crutchfield 2000; Greenbury et al. 2022). Major improvements 
are needed to make empirical fitness landscape studies more rele-
vant to real-world fitness landscapes.

Materials and Methods
Empirical Landscapes
We considered six empirical landscapes. The published E. coli 
DHFR gene fitness landscape has nine variable nucleotide sites 
each with four states, corresponding to three amino acids in 
DHFR (Papkou et al. 2023). The DHFR landscape contains 

(a) (b)

Fig. 5. Correlation between peak fitness and basin size in RMF landscapes of nine four-state sites. a) Correlation between peak fitness and basin size 
when σ = 0.5. Each dot is a peak, with the x axis showing its fitness and y axis showing its basin size measured by the fraction of genotypes in the 
landscape that can reach the peak by an adaptive walk. Pearson’s correlation (R) is indicated (P < 2.2 × 10−16). b) Relationship between parameter σ and 
the correlation between peak fitness and basin size across RMF landscapes. Pearson’s correlation (R) between σ and the correlation between peak 
fitness and basin size is indicated (P < 7.6 × 10−10).
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261,382 genotypes, whereas the DHFR sublandscape contains 
135,178 genotypes. Kuo et al. (2020) measured the translational 
activity of 197,890 variants of the Shine–Dalgarno sequence in 
E. coli, producing a translational activity landscape of nine nucleo-
tide sites each with four states. Domingo et al. (2018)measured the 
fitness of 4,176 variants of a yeast tRNA gene, producing a fitness 
landscape of 10 variable nucleotide sites including six two-state 
sites and four three-state sites. Moulana et al. (2022) measured 
the ACE2-binding affinity of 32,739 variants of the 
SARS-CoV-2 Omicron BA.1 spike RBD, producing a binding af-
finity landscape of 15 variable nucleotide sites each with two 
states. Poelwijk et al. (2019) measured the fluorescence intensity 
of 8,192 variants of a fluorescent protein from E. quadricolor, pro-
ducing a fluorescent intensity landscape of 13 variable amino acid 
sites each with two states. Lastly, Wu et al. (2016) measured the 
immunoglobulin-binding affinity of 149,361 variants of a 
Streptococcal protein GB1, producing a binding affinity landscape 
of four variable amino acid sites each with 20 states. For simplicity, 
we refer to all these landscapes as fitness landscapes, where fitness 
is approximated by different phenotypes in different landscapes.

Note that, in empirical landscapes, some genotypes do not 
have corresponding fitness values due to missing data in experi-
ments. When counting peaks and performing adaptive walks, 
we do not consider these genotypes as if they do not exist. We 
assessed the impact of missing data on our analysis by artificially 
removing various fractions of genotypes from theoretical land-
scapes (supplementary fig. S9, Supplementary Material online).

RMF Landscapes
In RMF landscapes (Aita et al. 2000; Aita and Husimi 2000; 
Neidhart et al. 2014), the fitness of genotype x equals 
F(x) = −D(x, x∗) + ηx, where x* is the genotype with the 
highest fitness, D(x, x∗) is the Hamming distance (i.e. number 
of sites that differ) between x and x*, and ηx is a random fitness 
effect sampled from a normal distribution with mean = 0.5 and 
SD = σ. All fitness values in each landscape were then linearly 
normalized to the range between 0 and 1.

We simulated RMF sublandscapes for comparison with the 
DHFR sublandscape as follows. First, we simulated a RMF 
landscape of nine four-state sites with a given σ. Second, 
from this landscape, we designated the m genotypes with the 
lowest fitness as nonfunctional and the rest as functional. 
Third, we removed from the landscape all nonfunctional geno-
types with no functional neighbors. Fourth, we identified the 
giant component from the network composed of the remaining 
genotypes and counted the number (n) of genotypes in the giant 
component. We repeated steps 2 to 4 with varying m until n ap-
proached 135,178, the size of the DHFR sublandscape. For the 
RMF sublandscapes considered in Fig. 3a, the final n deviated 
from 135,178 by a mean of 3.8% and a maximum of 6.5%.

When comparing an empirical landscape with its correspond-
ing same-size RMF landscape, we required that they have similar 
fractions of peaks. Specifically, we computed the absolute value of 
the difference between the fraction of peaks in the empirical land-
scape and that in the RMF landscape, which is then divided by the 
fraction of peaks in the empirical landscape. The above value was 
on average 0.026 in all analyses, with a maximum of 0.063.

NK Landscapes
In the NK model, parameter N denotes the genotype length or the 
number of variable sites whereas parameter K, which ranges from 0 
to N−1, denotes the number of other sites with which each focal site 
interacts (Kauffman and Weinberger 1989; Kauffman 1993). As K 

increases, the ruggedness of the landscape increases. We followed 
the code available at https://github.com/Mac13 kW/NK_model to 
generate our NK landscapes (Hwang et al. 2018; Song and 

Zhang 2021). The fitness of genotype x equals F(x) = 1
N

N

i=1
Fi(x), 

where Fi(x) is the fitness associated with the ith site. When K= 0, 
each site in the sequence acts independently, resulting in a single- 
peak landscape. As K increases, the landscape ruggedness rises be-
cause each site’s fitness contribution depends on its state and the 
states of K other (randomly picked) sites. All fitness values in each 
landscape were linearly normalized to the range between 0 and 1.

Papkou et al. (2023) stated that the DHFR sublandscape corre-
sponds to an NK landscape of the maximum ruggedness (i.e. a 
HoC landscape) in terms of the number of peaks. They arrived 
at this conclusion by multiplying the expected fraction of peaks 
(1/28) in a maximally rugged NK landscape of nine four-state sites 
(Kauffman and Levin 1987) by the number of functional genotypes 
(18,029) in the sublandscape. However, their calculation was in-
correct because they considered only functional genotypes in the 
sublandscape but the chance probability for a functional genotype 
to be a peak is higher than that (1/28) for a random genotype.

HoC Landscapes
In HoC landscapes, the fitness of a genotype is a random vari-
able sampled from a normal distribution with mean = 0.5 and 
SD = 0.1; random variables outside the range from 0 to 1 are 
discarded. Because there is no relationship between the simi-
larity of two genotypes and that of their fitness values, HoC 
landscapes have the maximal ruggedness (Kingman 1978).

Landscape Shuffling
We compared each empirical landscape with its corresponding 
maximally rugged landscape created by shuffling the fitness 
values of all genotypes in the empirical landscape. The mean 
number of peaks and the SD from 30 shuffled landscapes are 
reported in Table 1 for each empirical landscape. For the 
DHFR sublandscape, we additionally created its correspond-
ing maximally rugged landscapes by shuffling the fitness val-
ues of all “functional” genotypes.

Simulating Adaptive Walks Under the Strong 
Selection, Weak Mutation Regime
Adaptive walks were simulated under the strong selection, 
weak mutation (SSWM) regime. That is, at each step, a neigh-
boring genotype fitter than the current genotype was chosen 
randomly, and this process was repeated until a fitness peak 
was reached. We simulated one adaptive walk from each of 
106 randomly picked starting genotypes. We also simulated 
adaptive walks using Kimura’s fixation probability (Kimura 
1983; de Oliveira and Campos 2004) and found virtually iden-
tical results, as noted previously (Papkou et al. 2023). Using 
the SSWM regime is likely more appropriate than using 
Kimura’s formula given that the phenotype considered is not 
fitness in most of the landscapes studied here.

Basin Size
The basin of a fitness peak comprises all variants that can 
reach the peak by an adaptive walk. Specifically, we first iden-
tify neighbors of the peak that can reach the peak by an adap-
tive walk. For each of these “viable” neighbors, we then find 
its neighbors that can reach it by an adaptive walk. This 
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iterative analysis allows finding all genotypes that can reach 
the peak by an adaptive walk. Note that we require each adap-
tive walk to have a monotonic increase in fitness.

Supplementary Material
Supplementary material is available at Molecular Biology and 
Evolution online.
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